
Knowledge Reduction Based on Evidence
Reasoning Theory in Ordered Information

Systems�

Wei-Hua Xu1, Ming-Wen Shao2, and Wen-Xiu Zhang3

1 Faculty of Science, Institute for Information and System Sciences,
Xi’an Jiaotong University, Xi’an, Shaan’xi 710049, P.R. China

datongxuweihua@126.com
2 School of Information Technology, Jiangxi University of Finance & Economics,

Nanchang, Jiangxi 330013, P.R. China
shaomingwen1837@163.com

3 Faculty of Science, Institute for Information and System Sciences,
Xi’an Jiaotong University, Xi’an, Shaan’xi 710049, P.R. China

wxzhang@mail.xjtu.edu.cn

Abstract. Rough set theory has been considered as a useful tool to
model the vagueness, imprecision, and uncertainty, and has been applied
successfully in many fields. Knowledge reduction is one of the most im-
portant problems in rough set theory. However, in real-world most of
information systems are based on dominance relations in stead of the
classical rough set because of various factors. To acquire brief decision
rules from systems based on dominance relations, knowledge reductions
are needed. The main aim of this paper is to study the problem. The
basic concepts and properties of knowledge reduction based on evidence
reasoning theory are discussed. Furthermore, the characterization and
knowledge reduction approaches based on evidence reasoning theory are
obtained with examples in several kinds of ordered information system,
which is every useful in future research works of the ordered information
systems.

1 Introduction

The rough set theory, proposed by Pawlak in the early 1980s[1], is an extension
of set theory for the study of intelligent systems characterized by inexact, un-
certain or vague information and can serve as a new mathematica tool to soft
computing. This theory has been applied successfully in machine learning, pat-
ten recognition, decision support systems, expert systems, data analysis, data
mining, and so on. Since its introduction, the theory has generated a great deal
of interest among more and more researchers.

Knowledge reduction is one of the hot research topics of rough set theory.
Much study on this area had been reported and many useful results were
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obtained until now[2-8]. However, most work was based on consistent informa-
tion systems, and the main methodology has been developed under equivalence
relations which are often called indiscernibility relations. In practise, most of
information systems are not only inconsistent, but also based on dominance re-
lations because of various factors. In order to obtain the succinct decision rules
from them by using rough set method, knowledge reductions are needed. In re-
cent years, more and more attention has been paid to research of rough set.
Many types of knowledge reductions have been proposed in the area of rough
sets[9-15].

However, the original rough sets theory approach does not consider attributes
with preference-ordered domains, that is, criteria. In many real situations, we are
often face with the problems in which the ordering of properties of the considered
attributes plays a crucial role. One such type of problem is the ordering of ob-
jects. For this reason, Greco, Matarazzo, and Slowinski[16-20]proposed an exten-
sion rough sets theory, called the dominance-based rough sets approach(DRSA)
to take into account the ordering properties of criteria. This innovation is mainly
based on substitution of the indiscernibility relation by a dominance relation.
In DRSA, where condition attributes are criteria and classes are preference or-
dered, and many studies have been made in DRSA[21-25]. But useful results
of knowledge reductions are very poor in ordered information systems until
now.

In this paper the main objective is to study the problem. The basic con-
cepts and properties of knowledge reduction based on evidence reasoning theory
are discussed. Furthermore, the characterization and knowledge reduction ap-
proaches based on evidence reasoning theory are obtained with examples in sev-
eral kinds of ordered information system, which is every useful in future research
works of the ordered information systems.

2 Rough Sets and Ordered Information Systems

This section recalls necessary concepts of rough sets and ordered information
systems. Detailed description of the theory can be found in [12, 24].

In rough set theory, an information system(IS) is an quadruple I = (U, AT,
V, f), where U is a finite nonempty set of objects and AT is a finite nonempty set
of attributes, V =

⋃
a∈AT Va and Va is a domain of attribute a, f : U×AT → V is

a total function such that f(x, a) ∈ Va for every a ∈ AT, x ∈ U called information
function.

A decision table is a special case of an information system in which, among the
attributes, we distinguish one called a decision attribute. The other attributes
are called condition attributes. Therefore, I = (U, AT ∪ {d}, V, f) and AT ∩
{d} = φ,where set AT contains so-called condition attributes and d, the decision
attribute.

For an information system (U, AT, V, f), A ⊆ AT ,

RA = {(xi, xj)|f(xi, a) = f(xj , a), a ∈ A}
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is an equivalence relation(indiscernibility relation,Pawlak). So U can be classified
in terms of RA. The set which includes x can be expressed as [x]A and has the
following properties:

[x]AT ⊆ [x]A, RAT ⊆ RA.

The total of the classifications of U in terms of RA can be represented as
following:

U/RA = {[x]A|x ∈ U}.

It describes the meta-knowledge that can be represented by attribute A. In
addition, the object set involved with the meta-knowledge of U/RA can be rep-
resented by attribute A. It is denoted as σ(U/RA).

For any X ⊆ U , the upper and lower approximations can be represented as

RA(X) = {x|[x]A ∩ X �= φ}

RA(X) = {x|[x]A ⊆ X}.

If RA(X) = RA(X) = X , X is the knowledge which can be represented by A
and X is called a definable set. Otherwise, X is the knowledge which cannot be
represented by A, and is called a rough set.

In an information systems, if the domain(scale) of a condition attributes is
ordered according to a decreasing or increasing preference, then the attributes
is a criterion.

Definition 2.1. An information system is called an ordered information sys-
tem(OIS) if all condition attributes are criterions.

It is assumed that the domain of a criterion a ∈ AT is complete pre-ordered by
an outranking relation �a, and x �a y means that x is at least as good as y
with respect to criterion a. In the following, without any loss of generality, we
consider a condition criterion having a numerical domain, that is, Va ⊆ R(R
denotes the set of real numbers) and being of type gain , that is, x � y ⇔
f(x, a) ≥ f(y, a)(according to increasing preference) of x � y ⇔ f(x, a) ≤
f(y, a)(according to decreasing preference), where a ∈ AT, x, y ∈ U . For a subset
of attributes A ⊆ AT , we define x �A y ⇔ x �a y, ∀a ∈ A. That is to say x is
at least as good as y with respect to all attributes in A. In general, the domain
of the condition criterion may be also discrete, but the preference order between
its values has to be provided.

The dominance relation that identifies granules of knowledge is defined as
follows.

For a given OIS, we say that x dominates y with respect to A ⊆ AT , if x �A y,
and denoted by xR≥

Ay. Namely,

R≥
A = {(y, x) ∈ U × U |y �A x}.

If (y, x) ∈ R≥
A , then y dominates x with respect to A.

Given A ⊆ AT and A = A1 ∪A2,where attributes set A1 according to increas-
ing preference, A2 according to decreasing preference. The granules of knowledge
induced by the dominance relation R≥

A are the set of objects dominating x,
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[x]≥A = {y ∈ U |f(y, a1) ≥ f(x, a1) (∀a1 ∈ A1)
and f(y, a2) ≤ f(x, a2) (∀a2 ∈ A2)}

= {y ∈ U |(y, x) ∈ R≥
A}

and the set of objects dominated by x,

[x]≤A = {y ∈ U |f(y, a1) ≤ f(x, a1) (∀a1 ∈ A1)
and f(y, a2) ≥ f(x, a2) (∀a2 ∈ A2)}

= {y ∈ U |(x, y) ∈ R≥
A}

Which are called the A − dominating set and A − dominated set with respect
to x ∈ U , respectively.

Let U/R≥
A denote classification, which is the family set {[x]≥A|x ∈ U}. Any

element from U/R≥
A will be called a dominance class. Dominance classes in U/R≥

A

do not constitute a partition of U in general. They may be overlap.
In the following, for simplicity, without any loss of generality, we only consider

condition attributes with increasing preference.

Proposition 2.1. Let R≥
A be a dominance relation. The following hold.

(1) R≥
A is reflexive,transitive, but not symmetric, so it is not a equivalence

relation.
(2) If B ⊆ A ⊆ AT , then R≥

AT ⊆ R≥
A ⊆ R≥

B.
(3) If B ⊆ A ⊆ AT , then [xi]

≥
AT ⊆ [xi]

≥
A ⊆ [xi]

≥
B

(4) If xj ∈ [xi]
≥
A, then [xj ]

≥
A ⊆ [xi]

≥
A and [xi]

≥
A = ∪{[xj ]

≥
A |xj ∈ [xi]

≥
A}.

(5) [xj ]
≥
A = [xi]

≥
A iff f(xi, a) = f(xj , a) (∀a ∈ A).

(6) J = ∪{[x]≥A|x ∈ U} constitute a covering of U .

For any subset X of U , and A of AT define

R≥
A(X) = {x ∈ U |[x]≥A ⊆ X},

R≥
A(X) = {x ∈ U |[x]≥A ∩ X �= φ},

R≥
A(X) and R≥

A(x) are said to be the lower and upper approximation of X with

respect to a dominance relation R≥
A . And the approximations have also some

properties which are similar to those of Pawlak approximation spaces.

Proposition 2.2. Let (U, AT, V, f) be an OIS and X, Y ⊆ U , then its lower
and upper approximations satisfy the following properties.

(1) R≥
A(X) ⊆ X ⊆ R≥

A(X).

(2) R≥
A(X ∪ Y ) = R≥

A(X) ∪ R≥
A(Y );

R≥
A(X ∩ Y ) = R≥

A(X) ∩ R≥
A(Y ).

(3) R≥
A(X) ∪ R≥(Y ) ⊆ R≥

A(X ∪ Y );

R≥
A(X ∩ Y ) ⊆ R≥

A(X) ∩ R≥(Y ).
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(4) R≥
A(∼ X) =∼ R≥

A(X); R≥
A(∼ X) =∼ R≥

A(X).

(5) R≥
A(U) = U ; R≥

A(φ) = φ.

(6) R≥
A(X) ⊆ R≥

A(R≥A(X)); R≥
A(R≥

A(X)) ⊆ R≥
A(X).

(7) If X ⊆ Y , then R≥
A(X) ⊆ R≥

A(Y ) and R≥
A(X) ⊆ R≥

A(Y ).

where ∼ X is the complement of X .

Example 2.1. Given an OIS in Table 1.

Table 1

U × AT a1 a2 a3

x1 1 2 1
x2 3 2 2
x3 1 1 2
x4 2 1 3
x5 3 3 2
x6 3 2 3

From Table 1, we can see that the dominance classes determined by AT are

[x1]
≥
AT = {x1, x2, x5, x6}; [x2]

≥
AT = {x2, x5, x6};

[x3]
≥
AT = {x2, x3, x4, x5, x6}; [x4]

≥
AT = {x4, x6};

[x5]
≥
AT = {x5}; [x6]

≥
AT = {x6};

If X = {x2, x3, x5}, then
R≥

AT (X) = {x5} ⊆ X ; R≥
AT (X) = {x1, x2, x3, x5} ⊇ X

Definition 2.2. An ordered decision table(ODT) is an ordered information
system I = (U, AT ∪ {d}, V, f), where d(d �∈ AT ) is an overall preference called
the decision, and all the elements of AT are criterions.

Definition 2.3. For an ODT I = (U, AT ∪ {d}, V, f), if R≥
AT ⊆ R≥

d , then
this ODT is consistent, denoted by CODT, otherwise, this ODT is inconsis-
tent(IODT).

Example 2.2. Given an CODT based on Table 1 in Table 2.
From the table, we have

[x1]
≥
d = [x3]

≥
d = {x1, x2, x3, x4, x5, x6};

[x2]
≥
d = [x5]

≥
d = [x6]

≥
d = {x2, x5, x6};

[x4]
≥
d = {x2, x4, x5, x6}
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Table 2

U × (AT ∪ d) a1 a2 a3 d

x1 1 2 1 1
x2 3 2 2 3
x3 1 1 2 1
x4 2 1 3 2
x5 3 3 2 3
x6 3 2 3 3

Obviously, by the above and Example 2.1, we have R≥
AT ⊆ R≥

d , so the DOT
in Table 2 is CODT.

Example 2.3. We can obtain a IODT(Table 3) in stead of the value domain
of d by {3,2,1,2,3,1}, respectively in Example 2.2.

Table 3

U × (AT ∪ d) a1 a2 a3 d

x1 1 2 1 3
x2 3 2 2 2
x3 1 1 2 1
x4 2 1 3 2
x5 3 3 2 3
x6 3 2 3 1

From the table, we have

[x1]
≥
d = [x5]

≥
d = {x1, x5}; [x2]

≥
d = [x4]

≥
d = {x1, x2, x4, x5};

[x3]
≥
d = [x6]

≥
d = {x1, x2, x3, x4, x5, x6}.

Obviously, by the above and Example 2.1, we have R≥
AT �⊆ R≥

d , so the ODT
in Table 3 is IODT.

3 Knowledge Reduction Approach Based on Evidence
Reasoning in OIS and ODT

For an information system (U, AT, V, f) in Pawlak rough set theory, if RA = RAT

when A ⊂ AT , for any a ∈ A, RA−{a} �= RAT , then A is a reduction of the
information system. Moreover, reduction exists and is not unique[11].The set
of attributes that is included in all reductions is called the core. Similarly, the
following can be found in [16].

Definition 3.1. For an ordered information system OIS (U, AT, V, f), if R≥
A =

R≥
AT when A ⊂ AT , for any a ∈ A, R≥

A−{a} �= R≥
AT , then A is a reduction of
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the information system. The set of attributes that is included in all reductions
is called the core.

Definition 3.2. For an consistent ordered decision table CODT I = (U, AT ∪
{d}, V, f), if R≥

A ⊆ R≥
d when A ⊂ AT , for any a ∈ A, R≥

A−{a} �⊆ R≥
d , then A is

a reduction of the CODT.
Let I = (U, AT ∪ {d}, V, f) be an IODT , and for any set A ⊆ AT , R≥

A , R≥
d

be dominance relations derived from condition attributes set AT and decision
attributes set {d} respectively,denote

U/R≥
A = {[xi]

≥
A|xi ∈ U},

U/R≥
d = {d1, d2, · · · , dr},

σ≥
A(x) = {dj |dj ∩ [x]≥A �= φ, x ∈ U},

where [x]≥A = {y ∈ U |(y, x) ∈ R≥
A}.

From the above, we can have the following propositions immediately.

Proposition 3.1. The following always hold.
(1) R≥

A(dj) = ∪{[x]≥A : dj ∈ σ≥
A(x)}.

(2) If B ⊆ A, then σ≥
A (x) ⊆ σ≥

B (x), ∀x ∈ U.

(3) If [x]≥A ⊇ [y]≥A, then σ≥
A (x) ⊇ σ≥

A (y), ∀x, y ∈ U.

Definition 3.3. Let I = (U, AT ∪ {d}, V, f) be an IODT. If σ≥
A(x) = σ≥

AT (x),
for all x ∈ U , we say that A is an assignment consistent set of I. If A is an
assignment consistent set, and no proper subset of A is assignment consistent
set, then A is called an assignment consistent reduction of IODT.

An assignment consistent set is a subset of attributes set that preserves the
possible decisions of every object.

Obviously, the reductions of OIS and ODT also exist and is not unique.
In evidence reasoning, for a universe U a mass function can be defined by a

map m : 2U → [0, 1], which is called a basic probability assignment and satisfies
two axioms:

(1) m(φ) = 0

(2)
∑

X⊆U

m(X) = 1.

A subset X ⊆ U with m(X) > 0 is called a focal element. Using the basic
probability assignment, belief and plausibility of X are expressed as

Bel(X) =
∑

Y ⊆X

m(Y ),

P l(X) =
∑

Y ∩X �φ
m(Y ).
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In [26], the authors discussed the interpretations of belief functions in the
theory of Pawlak rough sets. For an information system (U, AT, V, f), X ⊆
U, A ⊆ AT , it is represented as follows:

Bel(X) =
|RA(X)|

|U | =
∑

Y ⊆X

m(Y )

Pl(X) =
|RA(X)|

|U | =
∑

Y ∩X=φ

m(Y )

Then Bel(X)is the belief function and Pl(X) is the plausibility function of U .
For an OIS and for any set A ⊆ AT , the classification of U = {x1, x2, · · · , xk}

by the dominance relation R≥
AT is denoted as

U/R≥
AT = {[x1]

≥
AT , [x2]

≥
AT , · · · , [xk]≥AT }.

Let
D = {(xi, xj)|i, j ∈ {1, 2, , · · · , k}}

then the element number of D is k2.
And we note that

W (xi, xj) = {a|f(xi, a) < f(xj , a)}

Specially, when W (xi, xj) = φ, we denoted as

D′ = {(xi, xj)|W (xi, xj) = φ}

H(A) = {(xi, xj)|W (xi, xj) = A}.

Then

m(A) =
|H(A)|

|D − D′| (A ⊆ AT )

is the mass function on AT . As a result, we have belief function Bel(A) and
plausibility function Pl(A).

Proposition 3.2. For an OIS I = (U, AT, V, f), if A ⊂ AT, P l(A) = 1 and if
B ⊆ A and B �= A, we have Pl(B) < 1, then A is a reduction of the OIS I.

Proof. Since Pl(A) = 1 if and only if

∑

B∩A �=φ

m(B) = 1.

This means that, for any m(B) �= 0, B must have the form of B ∩A �= φ, i.e. for
any H(B) �= φ, we have B ∩A �= φ. Then U/R≥

AT can be identified by A. For the
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dame reason, Pl(B) < 1 if there exist B′ such that H(B′) �= φ but B′ ∩ B = φ.
Therefore U/R≥

AT cannot be identified by B′ completely.

Example 3.1. Let we consider the OIS I = (U, AT, V, f) in Example 2.1 here.
Note that

A1 = {a1, a3} A2 = {a3} A3 = {a2} A4 = {a1, a2}

A5 = AT = {a1, a2, a3}
The classification of U/R≥

AT is as follows:

[x1]
≥
AT = {x1, x2, x5, x6}; [x2]

≥
AT = {x2, x5, x6};

[x3]
≥
AT = {x2, x3, x4, x5, x6}; [x4]

≥
AT = {x4, x6};

[x5]
≥
AT = {x5}; [x6]

≥
AT = {x6};

Then the matrix of W (xi, xj) is as in Table 4.

Table 4

x1 x2 x3 x4 x5 x6

x1 φ A1 A2 A1 A5 A1

x2 φ φ φ A2 A3 A2

x3 A3 A4 φ A1 A4 A5

x4 A3 A4 φ φ A4 A4

x5 φ φ φ A2 φ A2

x6 φ φ φ φ A3 φ

From the above, we have |D − D′| = 20, and m(A1) = 4/20, m(A2) = 5/20,
m(A3) = 4/20, m(A4) = 5/20, m(A5) = 2/20.

Therefore, for A = {a2, a3}, we can find A ∩ Ai �= φ(i = 1, 2, · · · , 5), and
Pl(A) = 1. Since Pl({a2}) = Pl(A3) = 4/20 and Pl({a3}) = Pl(A2) = 5/20.
Hence, A = {a2, a3} is a reduction of the OIS.

Next, we will mainly consider the method of the reduction in ODT.
Firstly, the CODT is considered.
For the consistent information system I = (U, AT ∪ {d}, V, f) with target d,

i.e. CODT.
For any set A ⊆ AT we note that

W (xi, xj) =
{

{a|f(xi, a) < f(xj , a)}, f(xi, d) < f(xj , d).
φ, f(xi, d) ≥ f(xj , d).

And
H(A) = {(xi, xj)|W (xi, xj) = A}.

D = {(xi, xj)|i, j ∈ {1, 2, · · · , k}}.
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Another, when W (xi, xj) = φ, we denoted as

D′ = {(xi, xj)|W (xi, xj) = φ}

Then

m(A) =
|H(A)|

|D − D′| (A ⊆ AT )

is the mass function on AT . As a result, we can calculate the belief function
Bel(A) and plausibility functionPl(A).

Proposition 3.3. For an CODT I = (U, AT ∪{d}, V, f), if A ⊂ AT, P l(A) = 1
and if B ⊆ A and B �= A, we have Pl(B) < 1, then A is a reduction of the CODT
I.

Example 3.2. Here the CODT I = (U, AT ∪ {d}, V, f) in Example 2.2 be
considered. Note that

A1 = {a1, a3} A2 = {a1, a2} A3 = AT = {a1, a2, a3}

Then the matrix of W (xi, xj), i, j ∈ {1, 2, · · · , 6} is as in Table 5.

Table 5

x1 x2 x3 x4 x5 x6

x1 φ A1 φ A1 A3 A1

x2 φ φ φ φ φ φ

x3 φ A2 φ A1 A2 A3

x4 φ A2 φ φ A2 A2

x5 φ φ φ φ φ φ

x6 φ φ φ φ φ φ

We have |D − D′| = 11, and m(A1) = 4/11, m(A2) = 5/11, m(A3) = 2/11.
Therefore, for A = {a2, a3} and A′ = {a1}, we can find A ∩ Ai �= φ, andA′ ∩

Ai �= φ(i = 1, 2, 3), moreover Pl(A) = Pl(A′) = 1. Since Pl({a2}) = 7/11 and
Pl({a3}) = 6/11. Hence, A = {a2, a3} and {a1}is a reduction of the CODT.

Finally, we will give the approach to reduction of IODT.
For any set A ⊆ AT we note that

W (xi, xj) =
{

{a|f(xi, a) < f(xj , a)}, σ≥
AT (xi) ⊂ σ≥

AT (xj).
φ, σ≥

AT (xi) �⊂ σ≥
AT (xj).

And
H(A) = {(xi, xj)|W (xi, xj) = A}.

D = {(xi, xj)|i, j ∈ {1, 2, · · · , k}}.
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Another, when W (xi, xj) = φ, we denoted as

D′ = {(xi, xj)|W (xi, xj) = φ}

Then

m(A) =
|H(A)|

|D − D′| (A ⊆ AT )

is the mass function on AT .
Hence, we can obtain the following.

Proposition 3.4. For an IODT I = (U, AT ∪{d}, V, f), if A ⊂ AT, P l(A) = 1
and if B ⊆ A and B �= A, we have Pl(B) < 1, then A is an assignment consistent
reduction of the IODT I.

Example 3.3. IODT I = (U, AT ∪ {d}, V, f) in Example 2.3 be considered.
Note that

A1 = {a1, a3} A2 = {a1, a2} A3 = {a3} A4 = AT = {a1, a2, a3}

Then the matrix of W (xi, xj), i, j ∈ {1, 2, · · · , 6} is as in Table 6.

Table 6

x1 x2 x3 x4 x5 x6

x1 φ φ φ A1 φ A1

x2 φ φ φ A3 φ A3

x3 φ φ φ A1 φ A4

x4 φ φ φ φ φ A2

x5 φ φ φ A3 φ A3

x6 φ φ φ φ φ φ

We have |D − D′| = 9, and m(A1) = 3/9, m(A2) = 1/9, m(A3) = 4/9,
m(A4) = 1/9.

Therefore, for A = {a2, a3} and A′ = {a1, a3}, we can find A∩Ai �= φ, andA′∩
Ai �= φ(i = 1, 2, 3, 4), moreover Pl(A) = Pl(A′) = 1. Since Pl({a1}) = 5/9,
Pl({a2}) = 2/9 and Pl({a3}) = 8/9. Hence, A = {a2, a3} and {a1, a3}is an
assignment consistent reduction of the IODT.

4 Conclusion

It is well-known that rough set theory has been regarded as a generalization of the
classical set theory in one way. Furthermore, this is an important mathematical
tool to deal with vagueness. We proposed a new technique of knowledge reduc-
tion using rough sets with evidence reasoning theory. The basic concepts and
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properties of knowledge reduction based on evidence reasoning theory are dis-
cussed. Furthermore, the characterization and knowledge reduction approaches
based on evidence reasoning theory are obtained with examples in several kinds
of ordered information system, which is every useful in future research works of
the ordered information systems. The successful applications of rough set theory
in a variety of intelligent systems will amply demonstrate heir usefulness and
versatility.
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